侧边栏壁纸
博主头像
秋码记录

一个游离于山间之上的Java爱好者 | A Java lover living in the mountains

  • 累计撰写 124 篇文章
  • 累计创建 261 个标签
  • 累计创建 42 个分类

对模型性能进行评估(Machine Learning 研习十五)

在上一篇我们已然训练了一个用于对数字图像识别的模型,但我们目前还不知道该模型在识别数字图像效率如何?所以,本文将对该模型进行评估。

使用交叉验证衡量准确性

评估模型的一个好方法是使用交叉验证,让我们使用cross_val_score()函数来评估我们的 SGDClassifier 模型,使用三折的 k 折交叉验证。k-fold 交叉验证意味着将训练集分成 k 个折叠(在本例中是三个),然后训练模型 k 次,每次取出一个不同的折叠进行评估:

当您看到这组数字,是不是感到很兴奋?毕竟所有交叉验证折叠的准确率(预测准确率)均超过了 95%。然而,在您兴奋于这组数字前,还是让我们来看看一个假分类器,它只是将每张图片归入最常见的类别,在本例中就是负类别(即非 5):

from sklearn.dummy import DummyClassifier

dummy_clf = DummyClassifier() 
dummy_clf.fit(X_train, y_train_5) 
print(any(dummy_clf.predict(X_train)))  # prints False: no 5s detected

您能猜出这个模型的准确度吗?让我们一探究竟:

没错,它的准确率超过 90%!这只是因为只有大约 10% 的图片是 5,所以如果你总是猜测图片不是 5,你就会有大约 90% 的时间是正确的。比诺斯特拉达穆斯还准。

这说明了为什么准确率通常不是分类器的首选性能指标,尤其是在处理偏斜 数据集时(即某些类别的出现频率远高于其他类别)。评估分类器性能的更好方法是查看混淆矩阵(CM)。

实施交叉验证

Scikit-Learn 现成提供的功能相比,您有时需要对交叉验证过程进行更多控制。在这种情况下,你可以自己实现交叉验证。下面的代码与 Scikit-Learn cross_val_score() 函数做了大致相同的事情,并会打印出相同的结果:

from sklearn.model_selection import StratifiedKFold 
from sklearn.base import clone

skfolds = StratifiedKFold(n_splits=3)  # add shuffle=True if the dataset is                                                # not already shuffled 
for train_index, test_index in skfolds.split(X_train, y_train_5):    
    clone_clf = clone(sgd_clf)    
    X_train_folds = X_train[train_index]    
    y_train_folds = y_train_5[train_index]    
    X_test_fold = X_train[test_index]    
    y_test_fold = y_train_5[test_index]
    clone_clf.fit(X_train_folds, y_train_folds)    
    y_pred = clone_clf.predict(X_test_fold)    
    n_correct = sum(y_pred == y_test_fold)    
    print(n_correct / len(y_pred))  # prints 0.95035, 0.96035, and 0.9604 

StratifiedKFold 类执行分层抽样,生成的折叠数包含每个类别的代表性比例。每次迭代时,代码都会创建分类器的克隆,在训练折叠上训练该克隆,并在测试折叠上进行预测。然后计算正确预测的次数,并输出正确预测的比例。

混淆矩阵

混淆矩阵的一般概念是计算在所有 A/B 对中,A 类实例被分类为 B 类的次数。例如,要知道分类器将 8 和 0 的图像混淆的次数,可以查看混淆矩阵的第 8 行第 0 列。

要计算混淆矩阵,首先需要有一组预测结果,以便与实际目标进行比较。你可以在测试集上进行预测,但最好暂时不要使用测试集(记住,只有在项目的最后阶段,也就是分类器准备好启动时,才会使用测试集)。相反,你可以使用 cross_val_predict() 函数:

from sklearn.model_selection import cross_val_predict

y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3) 

cross_val_score() 函数一样,cross_val_predict() 也会执行 k 折交叉验证,但它返回的不是评估分数,而是在每个测试折上做出的预测。这意味着你可以得到训练集中每个实例的准确预测(我说的 “准确 “是指 “样本外”:模型对训练期间从未见过的数据进行预测)。

现在可以使用 confusion_matrix() 函数获取混淆矩阵了。只需将目标类 (y_train_5) 和预测类 (y_train_pred) 传递给它即可:

混淆矩阵的每一行代表一个实际类别,每一列代表一个预测类别。矩阵的第一行是非 5 图像(负类): 其中 53 892 幅图像被正确分类为非 5 图像(称为真阴性图像),其余 687 幅图像被错误分类为 5 图像(称为假阳性图像,也称为 I 类错误)。第二行是 5 的图像(正类): 有 1 891 张图片被错误地归类为非 5(假阴性,也称为 II 类错误),而其余 3 530 张图片被正确地归类为 5(真阳性)。一个完美的分类器只有真阳性和真阴性,因此其混淆矩阵只有在主对角线上(从左上角到右下角)才有非零值:

混淆矩阵提供了大量信息,但有时您可能更喜欢更简洁的指标。一个有趣的指标是正向预测的准确度;这被称为分类器的精度(公式 见下图)。

TP 是正面的数量,FP是反面的数量。

要想获得完美的精度,一个简单的方法就是创建一个分类器,除了对它最有信心的实例进行一次正向预测外,它总是进行负向预测。如果这一个预测是正确的,那么分类器的精度就是 100%(精度 = 1/1 = 100%)。显然,这样的分类器用处不大,因为它会忽略除了一个正向实例之外的所有实例。因此,精度通常与另一个名为召回率的指标一起使用,召回率也称为灵敏度或真阳性率(TPR):这是分类器正确检测到的阳性实例的比率(公式见下图)。

FN 当然是假不良的数量。

精确度和召回率

Scikit-Learn 提供多种函数来计算分类器指标,包括精度和召回率:

现在,我们的 “5-检测器 “看起来不像我们观察它的准确性时那么闪亮了。当它声称一幅图像代表 5 时,正确率只有 83.7%。而且,它只能检测到 65.1% 的 5。

通常情况下,将精确度和召回率合并为一个称为 F1 分数的指标会比较方便,尤其是在需要用一个指标来比较两个分类器时。F1 分数是精确度和召回率的调和平均数(公式 见下图)。普通均值对所有值一视同仁,而调和均值对低值的权重要大得多。因此,分类器只有在召回率和精确率都很高的情况下才能获得较高的 F1 分数。

要计算 F1 分数,只需调用f1_score()函数即可:

F1 分数有利于精确度和召回率相似的分类器。这并不总是你想要的:在某些情况下,你主要关心精度,而在另一些情况下,你真正关心的是召回率。例如,如果您训练了一个分类器来检测对儿童安全的视频,那么您可能更倾向于选择一个剔除了许多好视频(召回率低)但只保留安全视频(高精度)的分类器,而不是一个召回率高得多但却让一些非常糟糕的视频出现在您的产品中的分类器(在这种情况下,您甚至可能想要添加一个人工管道来检查分类器的视频选择)。另一方面,假设您训练了一个分类器来检测监控图像中的偷窃者:只要您的分类器的召回率达到 99%,即使它只有 30% 的精度也没有问题(当然,保安会收到一些错误警报,但几乎所有的偷窃者都会被抓住)。

不幸的是,鱼和熊掌不可兼得:提高精度会降低召回率,反之亦然。这就是所谓的精度/召回权衡。

图像识别之入门案例之数字识别(Machine Learning 研习十四)
« 上一篇 2024-03-15
精确率(召回率)的权衡(Machine Learning 研习十六)
下一篇 » 2024-03-21

相关推荐

  • 微调模型(Machine Learning 研习之十二) 2024-03-09 14:59:44 +0800 CST
    微调模型(Machine Learning 研习之十二) 现在正处于百模乱战的时期,对于模型微调,想必您是有所了解了,毕竟国外的大语言模型一开源,国内便纷纷基于该模型进行微调,从而开始宣称领先于某某、超越了谁。可到头来,却让人发现他们套壳了国外大语言模型对外开放的API。 好了,我们不说国内各种大模型宣称超过了谁,毕竟,嘴巴长在别人脸上,我们管不了,也管不着,吹牛终将是会露馅的! 当我们需要对开源大模型进行微调时,看看有几种方法可以做到这一点的! 网格搜索 手动调整超参数,直到找到超参数值的完美组合。 这将是一项非常乏味的工作,而且您可能没有时间去探索多种组合。 相反,您可以使用 Scikit-Learn 的 GridSearchCV 类来搜索您。 您需要做的就是告诉它您希望它试验哪些超参数以及要尝试哪些值,它将使用交叉验证来评估超参数值的所有可能组合。 例如,以下代码搜索 RandomForestRegressor 的最佳超参数值组合: from sklearn.model_selection import GridSearchCV full_pipeline = Pipeline([ ("preprocessing", preprocessing), ("random_forest", RandomForestRegressor(random_state=42)), ]) param_grid = [{'preprocessing__geo__n_clusters': [5, 8, 10], 'random_forest__max_features': [4, 6, 8]}, {'preprocessing__geo__n_clusters': [10, 15], 'random_forest__max_features': [6, 8, 10]}, ] grid_search = GridSearchCV(full_pipeline, param_grid, cv=3, scoring='neg_root_mean_squared_error') grid_search.fit(housing, housing_labels) 请注意,您可以引用管道中任何估计器的任何超参数,即使该估计器嵌套在多个管道和列转换器的深处。 例如,当 Scikit-Learn 看到“preprocessing__geo__n_clusters”时,它会在双下划线处分割该字符串,然后在管道中查找名为“preprocessing”的估计器并找到预处理 ColumnTransformer。 接下来,它在此 ColumnTransformer 中查找名为“geo”的转换器,并找到我们在纬度和经度属性上使用的 ClusterSimilarity 转换器。 然后它找到该变压器的n_clusters超参数。 同样,random_forest__max_features指的是名为“random_forest”的估计器的max_features超参数,这当然是RandomForest模型。 这个param_grid中有两个字典,因此GridSearchCV将首先评估第一个字典中指定的n_clusters和max_features超参数值的所有3×3=9个组合,然后它将尝试第一个字典中指定的所有2×3=6个超参数值组合 第二个字典。 因此,网格搜索总共将探索 9 + 6 = 15 种超参数值组合,并且每个组合都会对管道进行 3 次训练,因为我们使用的是 3 折交叉验证。 这意味着总共将有 15 × 3 = 45 轮训练! 这可能需要一段时间,但是完成后您可以获得如下参数的最佳组合:
  • 图像识别之入门案例之数字识别(Machine Learning 研习十四) 2024-03-15 17:48:03 +0800 CST
    图像识别之入门案例之数字识别(Machine Learning 研习十四) 在前面的文章中,我们曾提到最为常见的监督学习任务是回归(预测价值)和分类(预测类别)。我们使用线性回归、决策树和随机森林等各种算法探讨了回归任务,即预测房屋价值。现在,我们将把注意力转向分类系统。 MNIST数据集 我们将使用 MNIST 数据集,这是一组由人类手写的 70,000 张小数字图像。每张图片都标注了所代表的数字。人们对这个数据集的研究非常深入,以至于它经常被称为机器学习的 “hello world”:每当人们提出一种新的分类算法时,他们都会好奇地想看看这种算法在 MNIST 上的表现如何,而且任何学习机器学习的人迟早都会用到这个数据集。 Scikit-Learn 提供了许多下载流行数据集的辅助函数。MNIST 就是其中之一。以下代码从 OpenML.org 获取 MNIST 数据集: from sklearn.datasets import fetch_openml mnist = fetch_openml('mnist_784', as_frame=False) sklearn.datasets 包主要包含三种类型的函数:fetch_* 函数(如 fetch_openml())用于下载现实生活中的数据集;load_* 函数用于加载 Scikit-Learn捆绑的小型玩具数据集(因此无需通过互联网下载);make_* 函数用于生成假数据集,对测试非常有用。生成的数据集通常以 (X, y) 元组的形式返回,其中包含输入数据和目标数据,两者都是 NumPy 数组。其他数据集以 sklearn.utils.Bunch 对象的形式返回,这是一个字典,其条目也可以作为属性访问。它们通常包含以下条目: “DESCR” ​ 数据集描述 “data” ​ 输入数据,通常为Numpy二维数组 “target” ​ 标签,通常为Numpy一维数组 fetch_openml() 函数有点不寻常,因为默认情况下,它以 Pandas DataFrame 的形式返回输入,以 Pandas Series 的形式返回标签(除非数据集很稀疏)。但 MNIST 数据集包含图像,而 DataFrame 并不适合图像,因此最好设置 as_frame=False,以 NumPy 数组的形式获取数据。让我们来看看这些数组: 共有 70,000 幅图像,每幅图像有 784 个特征。这是因为每幅图像都是 28 × 28 像素,每个特征只代表一个像素的强度,从 0(白色)到 255(黑色)。让我们来看看数据集中的一个数字(图 3-1)。我们需要做的就是抓取一个实例的特征向量,将其重塑为 28 × 28 数组,然后使用 Matplotlib 的 imshow() 函数显示出来。我们使用 cmap="binary" 来获取灰度颜色图,其中 0 代表白色,255 代表黑色:
  • 微调模型——续(Machine Learning 研习之十三) 2024-03-09 17:45:01 +0800 CST
    微调模型——续(Machine Learning 研习之十三) 集成方法 微调系统的另一种方法是尝试组合性能最佳的模型。 群体(或“整体”)通常会比最好的单个模型表现得更好,就像随机森林比它们所依赖的单个决策树表现更好一样,特别是当各个模型犯下不同类型的错误时。 例如,您可以训练和微调 k 最近邻模型,然后创建一个仅预测随机森林预测和该模型预测的平均值的集成模型。 分析最佳模型及其错误 通过检查最佳模型,您通常会获得对问题的深入见解。 例如,RandomForestRegressor可以指示每个属性对于做出准确预测的相对重要性: 让我们按降序对这些重要性分数进行排序,并将它们显示在相应的属性名称旁边: 有了这些信息,您可能想尝试删除一些不太有用的功能(例如,显然只有一个ocean_proximity类别真正有用,因此您可以尝试删除其他功能)。 您还应该查看系统所犯的具体错误,然后尝试了解为什么会犯这些错误,以及如何解决问题:添加额外的功能或删除无信息的功能,清理异常值等。 现在也是一个好时机,可以确保您的模型不仅平均运行良好,而且适用于所有类别的地区,无论是农村还是城市、富裕还是贫穷、北部还是南部、少数民族还是非少数民族等。 每个类别的验证集需要一些工作,但这很重要:如果您的模型在整个地区类别上表现不佳,那么在问题解决之前可能不应该部署它,或者至少不应该使用它 对该类别进行预测,因为它可能弊大于利。 在测试集上评估您的系统 对模型进行一段时间的调整后,您最终会得到一个性能足够好的系统。 您已准备好在测试集上评估最终模型。 这个过程没有什么特别的; 只需从测试集中获取预测变量和标签并运行Final_model来转换数据并进行预测,然后评估这些预测: X_test = strat_test_set.drop("median_house_value", axis=1) y_test = strat_test_set["median_house_value"].copy() final_predictions = final_model.predict(X_test) final_rmse = mean_squared_error(y_test, final_predictions, squared=False) print(final_rmse) # prints 41424.40026462184 在某些情况下,这样的泛化误差点估计不足以说服您启动:如果它只比当前生产的模型好 0.1% 怎么办? 您可能想了解这个估计的精确度。 为此,您可以使用 scipy.stats.t.interval() 计算泛化误差的 95% 置信区间。 您会得到从 39,275 到 43,467 的相当大的区间,而您之前的点估计值 41,424 大致位于中间: 如果您进行了大量的超参数调整,性能通常会比使用交叉验证测量的性能稍差。 这是因为您的系统最终经过微调以在验证数据上表现良好,但在未知数据集上可能表现不佳。 本示例中的情况并非如此,因为测试 RMSE低于验证 RMSE,但当发生这种情况时,您必须抵制调整超参数以使数字在测试集上看起来不错的诱惑; 这些改进不太可能推广到新数据。 现在是项目预启动阶段:您需要展示您的解决方案(突出显示您所学到的内容、有效的内容和无效的内容、做出的假设以及系统的局限性),记录所有内容,并使用以下内容创建精美的演示文稿: 清晰的可视化和易于记忆的陈述(例如,“收入中位数是房价的第一预测指标”)。 在这个加州住房示例中,系统的最终性能并不比专家的价格估计好多少,专家的价格估计通常会下降 30%,但启动它可能仍然是一个好主意,特别是如果这样可以释放更多资金 给专家一些时间,以便他们可以从事更有趣、更有成效的任务。 启动、监控和维护您的系统 您现在需要准备好用于生产的解决方案(例如,完善代码、编写文档和测试等)。 然后您可以将模型部署到生产环境。 最基本的方法就是保存您训练的最佳模型,将文件传输到您的生产环境并加载它。 要保存模型,您可以使用 joblib 库,如下所示:
  • 选择和训练模型(Machine Learning 研习之十一) 2024-01-14 15:50:17 +0800 CST
    选择和训练模型(Machine Learning 研习之十一) 当您看到本文标题时,不禁感叹,总算是到了训练模型这一节了。 是啊,在之前的文章中,我们对数据进行了探索,以及对一个训练集和一个测试集进行了采样,也编写了一个预处理管道来自动清理,准备您的数据用于机器学习算法,然而现在,我们可以选择并训练模型了。 训练集的训练与评估 我们从一个最基本的线性回归模型开始: from sklearn.linear_model import LinearRegression lin_reg = make_pipeline(preprocessing, LinearRegression()) lin_reg.fit(housing, housing_labels) 很好,至此,我们现在算是有了一个有效的线性回归模型,可以在训练集上试用它,查看前五个预测,并将它们与标签进行比较:: 第一个预测偏差很大(超过200,000美元!),而其他预测则更好,两个预测偏差约25%,还有两个预测 偏差不到10%。请记住,您选择使用RMSE作为性能测度,因此您希望使用Scikit-Learn的mean_squared_error()函数在整个训练集上测量该回归模型的RMSE,并将平方参数设置为False。 这总比没有好,但显然不是一个很好的分数,大多数地区的房屋价值中位数在120,000美元和26.5万美元之间,所以一个典型的68628美元的预测误差真的不是很令人满意。这是一个模型拟合训练数据不足的示例。当这种情况发生时,可能意味着这些特征没有提供足够的信息来做出好的预测,或者模型不够强大。 正如我们在上一章中看到的,修复欠拟合的主要方法是选择一个更强大的模型,为训练算法提供更好的特征,或者减少对模型的约束。这个模型没有正规化,这就排除了最后一个选项。您可以尝试添加更多功能,但首先您要尝试更复杂的模型,看看它是如何工作的。 您决定尝试DecisionTreeRegressor,因为这是一个相当强大的模型,能够在数据中找到复杂的非线性关系(后续篇章将更详细地介绍决策树): from sklearn.tree import DecisionTreeRegressor tree_reg = make_pipeline(preprocessing, DecisionTreeRegressor(random_state=42)) tree_reg.fit(housing, housing_labels) 现在模型已训练完毕,您可以在训练集中对其进行评估: 等等,难道这个模型真的很完美吗?当然咯,更有可能的是模型严重地过度拟合了数据。您怎么能确定正如你前面看到的,在您准备好启动一个您有信心的模型之前,您不想碰测试集,所以您需要使用一部分训练集进行训练,另一部分用于模型验证。 使用交叉验证进行更好的评估 评估决策树模型的一种方法是使用train_test_split()函数将训练集拆分为较小的训练集和验证集,然后针对较小的训练集训练您的模型,并针对验证集对其进行评估。这是一点努力,但没有太难,它会工作得相当不错。 一个很好的替代方法是使用Scikit-Learn的k_-fold交叉验证特性。下面的代码随机地将训练集分成10个不重叠的子集,称为fold,然后训练和评估决策树模型10次,每次选择不同的fold进行评估,并使用其他9个fold进行训练。结果是一个包含10个评价分数的数组: from sklearn.model_selection import cross_val_score tree_rmses = -cross_val_score(tree_reg, housing, housing_labels, scoring="neg_root_mean_squared_error", cv=10) 警告: Scikit-Learn的交叉验证功能期望的是效用函数(越大越好)而不是成本函数(越低越好),所以评分函数实际上是RMSE的反面。它是一个负值,所以您需要切换输出的符号来获得RMSE分 数。 让我们来看看结果吧: 现在决策树看起来不像以前那么好了。事实上,它的表现几乎和线性回归模型一样差!请注意,交叉验证不仅允许您获得模型性能的估计值,还允许您测量该估计值的精确度(即其标准差)。决策树的均方根误差约为66,868,标准差约为2,061。如果只使用一个验证集,则不会有此信息。但是交叉验证是以多次训练模型为代价的,所以它并不总是可行的。 如果您为线性回归模型计算相同的度量,您将发现平均RMSE为69,858,标准差为4,182。因此,决策树模型的性能似乎比线性模型稍微好一点,但由于严重的过拟合,差异很小。我们知道存在过拟合 问题,因为训练误差很低(实际上为零),而验证误差很高。 现在让我们尝试最后一个模型:随机森林调节器,随机森林的工作原理是在特征的随机子集上训练许多决策树,然后平均出它们的预测值。这样的模型组成的许多其他模型被称为合奏:他们能够提高性能基础模型(在本例中为决策树)。代码与前面的代码大同小异: from sklearn.ensemble import RandomForestRegressor forest_reg = make_pipeline(preprocessing, RandomForestRegressor(random_state=42)) forest_rmses = -cross_val_score(forest_reg, housing, housing_labels, scoring="neg_root_mean_squared_error", cv=10) 随机森林真的看起来非常有前途的任务!但是,如果您训练一个RandomForest并测量训练集上的RMSE,您将发现大约17,474:这要低得多,这意味着仍然存在大量的过度拟合。可能的解决方案是 简化模型,约束它(即,规则化它),或得到更多的训练数据。但是,在深入研究随机森林之前,您应该尝试来自各种类别机器学习算法的许多其他模型(例如,具有不同内核的多个支持向量机,可能还有一个神经网络),而无需花费太多时间调整超参数。目标是列出几个(两到五个)有前途的模型。
  • 机器学习中的 Transformation Pipelines(Machine Learning 研习之十) 2023-12-11 19:50:17 +0800 CST
    机器学习中的 Transformation Pipelines(Machine Learning 研习之十) Transformation Pipelines 有许多数据转换步骤需要以正确的顺序执行。幸运的是,Scikit-Learn提供了Pipeline类来帮助处理这样的转换序列。下面是一个用于数值属性的小管道,它首先对输入特性进行归并,然后对输入特性进行缩放: from sklearn.pipeline import Pipeline num_pipeline = Pipeline([ ("impute", SimpleImputer(strategy="median")), ("standardize", StandardScaler()), ]) Pipeline构造函数采用名称/估算器对(2元组)的列表,定义了一系列步骤。名称可以是您喜欢的任何名称,只要它们是唯一的,并且不包含双下划线(__)。以后我们讨论超参数调优时,它们会很有用。估计器必须都是转换器(即,它们必须有一个fit_transform()方法),除了最后一个,它可以是任何东西:转换器、预测器或任何其他类型的估计器。 如果你不想命名transformers你可以使用 make_pipeline() 函数; 它将transformers作为位置参数,并使用transformers类的名称(小写且不带下划线)创建管道(例如,“simpleimputer”): from sklearn.pipeline import make_pipeline num_pipeline = make_pipeline(SimpleImputer(strategy="median"), StandardScaler()) 如果多个transformers具有相同的名称,则会在其名称后附加索引(例如“foo-1”、“foo-2”等)。 当您调用管道的 fit() 方法时,它会在所有transformers上顺序调用 fit_transform(),将每个调用的输出作为参数传递给下一个调用,直到到达最终估计器,为此它只调用 fit() 方法。 该管道公开与最终估计器相同的方法。 在此示例中,最后一个估计器是 StandardScaler,它是一个transformers,因此管道也充当transformers。 如果您调用管道的transform()方法,它将按顺序将所有转换应用于数据。 如果最后一个估计器是预测器而不是变换器,那么管道将具有 Predict() 方法而不是 Transform() 方法。 调用它会按顺序将所有转换应用于数据并将结果传递给预测器的 Predict()方法 让我们调用管道的 fit_transform() 方法并查看输出的前两行,四舍五入到小数点后两位: 如前所述,如果要恢复一个漂亮的DataFrame,可以使用管道的get_feature_names_ out()方法: df_housing_num_prepared = pd.DataFrame( housing_num_prepared, columns=num_pipeline.get_feature_names_out(), index=housing_num.index) 管道支持索引;例如,管道[1]返回管道中的第二个估计值,管道[:-1]返回一个包含除最后一个估计值以外的所有估计值的管道对象。您还可以通过steps属性(它是名称/估算器对的列表)或named_steps字典属性(它将名称映射到估算器)访问估算器。例如,num_line[“ simpleimputer”]返回名为“simpleimputer”的估计器。 到目前为止,我们已经分别处理了分类列和数值列。如果有一个能够处理所有列的转换器,将适当的转换应用到每一列,那会更方便。为此,您可以使用olumnTransformer。例如,下面的ColumnTransformer将把num_pipeline(我们刚刚定义的那个)应用于数字属性,把cat_pipeline应用于类别属性: from sklearn.compose import ColumnTransformer num_attribs = ["longitude", "latitude", "housing_median_age", "total_rooms", "total_bedrooms", "population", "households", "median_income"] cat_attribs = ["ocean_proximity"] cat_pipeline = make_pipeline( SimpleImputer(strategy="most_frequent"), OneHotEncoder(handle_unknown="ignore")) preprocessing = ColumnTransformer([ ("num", num_pipeline, num_attribs), ("cat", cat_pipeline, cat_attribs), ]) 首先导入ColumnTransformer类,然后定义数字和分类列名的列表,并为分类属性构造一个简单的管道。最后,我们构造了一个列变换器。它的构造函数需要一个三元组(3-tuple)列表,每个三元组包含一个名称(必须是唯一的且不包含双下划线)、一个转换器和一个应该应用转换器的列的名称(或索引)列表。