首页
友情链接
点点滴滴
关于本站
秋码记录
一个游离于山间之上的Java爱好者 | A Java lover living in the mountains
累计撰写
150
篇文章
累计创建
333
个标签
累计创建
47
个分类
栏目
首页
友情链接
点点滴滴
关于本站
搜索
包含标签
文本转语音
基于Qwen2.5大模型的Spark-TTS,零样本语音克隆,CPU可运行之本地部署(Windows篇)
在人工智能时代,语音合成(TTS)技术已成为人机交互的核心组件之一。然而,传统TTS系统长期受限于多阶段架构复杂、语音控制能力弱、跨语言表现差等问题。 基于Qwen2.5大模型的**Spark-TTS**横空出世,凭借其创新的BiCodec编码技术、零样本语音克隆能力和细粒度语音控制,迅速成为开源社区的热点。 技术突破:Spark-TTS的三大创新 1、BiCodec:重新定义语音编码 Spark-TTS首创BiCodec单流语音编码器,将语音分解为两类核心编码: 语义Tokens:低比特率捕捉语言内容,确保信息的高效传输。 全局Tokens:固定长度编码说话人属性(音色、性别、语调等)。 这种设计简化了传统TTS的多模型协作流程,实现端到端生成,推理速度提升30%以上 2、零样本语音克隆:无需训练,秒级复刻 仅需3秒参考音频,Spark-TTS即可生成高度相似的个性化语音,音色一致性(SIM)指标超越同类模型如LLaMA-TTS。其核心在于结合Qwen2.5的语言理解能力与BiCodec的解码精度,突破了传统TTS依赖大量训练数据的限制。 3、细粒度语音控制:从参数到情感的精准调节 粗粒度:性别、情感风格一键切换。 细粒度:音高、语速、停顿时长可逐句微调。 用户甚至可通过文本描述生成虚拟音色(如“沉稳的中年男声,语速加快20%”),远超传统基于参考音频的模拟方式。 功能实测:性能与效果全解析 多语言与跨语种切换 Spark-TTS支持中英文无缝切换,无需单独训练语言模型。例如,输入混合文本“2025年Q1财报增长15%”,合成语音能自然处理数字与语言边界,避免传统TTS的机械断句问题 。 语音质量指标 自然度(MOS):评分>4.5(满分5),接近真人水平。 重建质量:在STOI、PESQ等指标上超越VITS、FastSpeech2等主流模型。 实时性(RTF) :单GPU推理速度达0.15秒/秒,满足实时交互需求。 实战对比:与其他开源TTS的差异 数据来源:公开评测与社区实测 项目 零样本克隆 多语言支持 细粒度控制 推理速度 Spark-TTS ✅ 中英 ✅ 快 CosyVoice2 ✅ 中英 ❌ 中等 Fish-Speech ❌ 中英日 ❌ 慢 本地部署 那么接下来,我们将在本地电脑部署这款开源的文本转语音模型,看看效果是否真如官方所宣传的那般。 我还是一如既往的使用python3自带的venv模块来创建python 虚拟环境,当然,你也是可以使用anaconda或着miniconda等软件来搭建python 虚拟环境。 我本地电脑使用python的版本,始终是python 3.10.9,系统则是windows11。 创建python虚拟环境 python -m venv Spark-TTS-env cd Spark-TTS-env/Scripts activate clone推理代码 Spark-TTS的推理代码托管于享誉全球的github.com上,倘若你的电脑安装了git,那么直接在Terminal中执行以下命令,便把Spark-TTS推理代码下载到你的电脑硬盘里。 git clone https://github.com/SparkAudio/Spark-TTS.git 安装项目所需的依赖 pip install -r requirements.txt 安装CUDA版的torch(可选) 这一步是可选的,项目是可以通过CPU来推理的,也就是刚刚安装的torch是CPU版的,如果你想要使用GPU来加速推理,那么,就先卸载CPU版的torch,安装支持GPU的torch。
2025-03-10
[AI]